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A natural generalization to systems of first order equations is given of Poincare's
classical theorem on ratio asymptotics of solutions of higher order recurrence
equations. (~; 1990 Academic Press, Inc.

A key result in the theory of recurrence equations is the following
theorem of Poincare (see [6, Sect. 2, pp. 213-217, and Sect. 6, p. 237], or,
for secondary sources, [I, p. 391; 4, Sect. 17.1, p. 526; 5, Sect. x'6, p. 300]).

THEOREM 1. Let k be a positive integer. Suppose that for every integer
n > 0 the difference equation

holds, where the limits

k - 1

f(n+k)+ I ajnf(n+j)=O
J~ 0

(1)

lim ajn =a,
n_ (:I.)

(O~j<k) (2)
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exist, and the roots of the "characteristic equation"

k -1

Zk + L ajz i =0
j c. 0

93

(3)

all have d(fferent absolute values. Write (1' ... , (k for these roots. Then either
f(n) = 0 for all large enough n, or there is an I with I ~ I~ k such that

lim f(n + I )/f(n) = (,.
11 -+ :.;f.;

(4)

This result has applications, e.g., to the study of the asymptotic behavior
of orthogonal polynomials. The example of the Legendre polynomials is
mentioned by Poincare himself (see [6, p. 252]); for a recent discussion of
certain applications of Poincare's theorem to orthogonal polynomials, see,
e.g., [3, Sect. 2]. The aim of these notes is to prove the following
generalization of the above theorem.

THEOREM 2. Let k be a positive integer, and let All he a k x k matrix such
that

lim An=A (5)

exists. Suppose that all eigenvalues of the matrix A have different ahsolute
values. Write VI' ... , Vk for the (column) eigenvectors of A. Let the
k-dimensional column vectors Un be such that

Un+ 1= Anun (n > 0). (6)

Then either Un = 0 for all large enough n, or Un 1= 0 for all large enough n, and
in this case there is an I with I ~ I~ k and a sequence of complex numbers
c" such that

lim CnU n = v,.
n~ x

(7)

This result arises naturally if one restates the higher order equation given
in (I) as a system of first order equations. However, what one obtains in
this way is a real generalization; that is, there seems to be no way of
making use of the statement of Theorem I in the proof of Theorem 2.
Nonetheless, the proof of Theorem 2 we are about to present does make
use of ideas contained in the standard proof (which is essentially Poincare's
original proof), given in the cited sources, of Theorem I. (However, all of
these sources give the proof only in case k = 3 except for [I]; this book
gives the proof for an arbitrary k, but the presentation is much too
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complicated.) First we are going to give the proof of Theorem 2, and then
we will show how Theorem 1 follows from Theorem 2.

Proof If Un = 0 for some n, then Un' = 0 for all n' ~ n. The conclusion of
the theorem holds in this case; so assume that Un # 0 for any positive
integer n. Write Un as a linear combination of the eigenvectors of A:

k

un=LPjnVj'
j~l

(8)

Write ;'j for the eigenvalue corresponding to the eigenvector vj ; assume that
these eigenvalues are arranged in the order of decreasing absolute value:

Let 11·11 denote the 12 norm on the space of k-dimensional column vectors.
Without loss of generality, we may assume that

Ilvd = 1 for 1~j~k. (9)

Let t; > O. Then there is a positive integer N such that for every n> Nand
every j with 1~ j ~ k we have

( to)

The reason is simply that we have

lim Ilun+ 1 -Aun;I/llunll = lim II(An-A)unll/llunl: =0
n _::I:) !l--to ::x;

in view of (6) and (5).
For a fixed n, let In be the smallest integer I with 1~ I~ k for which IP'n I

is maximal; that is,

for 1~ j < In < j' ~ k.

Our first claim is that, for large enough n, In is a nonincreasing function of
n. To see this, first notice that, in view of (9), we have

IIUnll ~ k !p,,,,,1

according to Minkowski's (triangle) inequality. Hence, by (to) we have

(11 )

Now let n be large enough, and fix j with In < j ~ k. Then
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according to (11), provided f, is small enough; specifically, to ensure the
validity of the second inequality, it is sufficient that

2h< min (1)'vl-I)'v+II).
1 ~ \' <k

This implies that I" + I ~ I", as we wanted to show.
Now, since I" is nonincreasing for large enough n, it must be eventually

constant; that is, we must have I" = I provided n > No, with some integer
No. Notice that for n > No we must have PIli of- 0 since we assumed that
U" of- 0 for all n. As e in (11) can be arbitrarily small provided n is large
enough, it is now easy to conclude that

lim PI.,,+ I/PIII = AI'
n- x

We are going to show that

(12 )

lim Pi,,!PII/=O
n_ x:

To this end, note that we have

for j of- I (I ~ j ~ k). (13 )

I· ,I' Pi," + 1 ) Pin I I' IPi." + 1 " Pi" I 01m "'1--- 'i- = 1m ---"'j- =
'I ~ ex I PI. 'I + 1 PIn 'I - ex: Pin PI" I

(l ~j~k)

in view of (12) and (11 ), as t: can be arbitrarily small in the latter equation
provided n is large enough. Hence

lim (1)'IIIPi.n+11-i)) IPi"I)=o
" ~ ex; PI,,, + 1 PI"

Let <n,. >be a sequence such that

lim IPin, I= lim sup IPin I
\; - oc PIn~. " -+ .:x;: Pin

(I ~j~k),

( ~ 1).

(14)

Then, using (14) with n = nv - 1 making v --+ x" we obtain

1),,1 lim sup IPi'll ~ Ii) lim sup IPi"l;
" _ ex, PIn 'I ~ et: Pin

using (14) with n = n,. and making v --+ 00, we obtain

IAlllim sup IPi'll ~ IA,llim sup IPi
n!.

n - x PIn n -.. '"£ PIli
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This means
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1).,1 lim sup IPin I= I)) lim sup IPinl·
n~ ex: Pin "~ x Pin

If j #- I then IA.j 1#- 1;.,1. As the above limit superior is not infinite (indeed,
it is ~ 1), this equation is possible only if it is zero. This establishes (13);
(7) with C,,= IIP'n is an easy consequence of (13) (cf. (8)), completing the
proof of the theorem. I

Theorem 1 easily follows from Theorem 2:

Proof of Theorem 1. Define the column vector U" = <uo", ..., Uk 1,,,)*

(the asterisk indicates transpose) for n > 0 by putting

Ujn = f(n + j)

The recurrence equations

(O~j<k).

(0~.i~k-2)

(15 )

k-I

Uk 1.,,-1 = - L a""uv"

\'=0

for n > 0 are clearly equivalent to Eq. (1) (note that these equations
are consistent with (15)). These recurrence equations can be written in
matrix form as given in (6). In view of (2), the limit matrix A has the
form A= [Ciij]o<;;i,J<;;k-l, where (Xi.il-l = 1 (0~i~k-2), Cik_l,j= -aj

(0 ~ j ~ k - 1), and all the other aij are 0; that is,

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

A= .......................................

0 0 0 0
-ao -a l -a2 -ak_2 -ak _ 1

The eigenvalues of this matrix are clearly the roots of Eq. (3), that is,
'1' ..., (k' Applying Theorem 2, we obtain that either U" = 0 for all large
enough n, in which case f(n) is also 0 for all large enough n, or U" #- 0 for
all large enough n, in which case (7) holds. In the former case the first
alternative of the conclusion of Theorem 1 is true. Assume that the lattcr
is the casco Then (6), (7), and the definition of eigenvector imply that

(16 )
n_x
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with the I given by (7). Note also that

lim inf If(n )1/llu" II > O.
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( 17)

This holds in view of (7) (and (15) with j = 0) since, WrItIng Vp
(0";; j";; k - I) for the jth component of the eigenvector v" the component
VOl is not zero. Indeed, these components satisfy the equations

(0";;j";;k-2)

according to the eigenvector equation Av, = (,v,. Thus if VOl were 0, we
would have v, =0. Inequality (17) implies thatf(n) #0 for all large enough
n. Therefore (15), (16), and (17) imply (4). This completes the proof of
Theorem 1. I

After this paper was completed, we received the dissertation of R.1.
Kooman [2], where he considers results similar to Theorem 2 with weaker
restrictions on the eigenvalues of the limit matrix. He also discusses various
results about the speed of convergence of the solutions of recurrence
equations of this type.
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